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1 Executive Summary

Our research examines the relationships between processed foods, food

insecurity, health outcomes, socioeconomic factors, and race across the

United States. Through exploratory data analysis (EDA) and iterative

modeling, we uncovered significant associations between processed

foods and food environments, racial demographics, geographic locations,

and health indicators like obesity and diabetes rates.

EDA revealed broad trends, including a positive correlation between

convenience store prevalence and obesity rates, and the significant pre-

dictive power of the Food Environment Index (FEI) for adult obesity.

Racial isolation correlated with decreased food environment quality
for minority populations, but not for White Isolation. We also noted

substantial disparities in food access between urban and rural areas.

Our iterative modeling process began with partially linear models com-

bining LASSO regression and random forests. This approach identified

general correlations between food insecurity and negative health/so-

cioeconomic outcomes at the national level. State-level analysis showed
stronger correlations in states with worse health outcomes.

We then progressed to hierarchical linear models to capture nuanced

state-level effects, providing a more detailed description of inter-state

inequalities in food environments. Bayesian hierarchical models served

as a robustness check and explored complex functional forms in our data.

Expanding to panel data, we examined trends over time using linear,

hierarchical, and Bayesian models. This temporal analysis reinforced

the importance of food-related variables in predicting health outcomes,

even when controlling for socioeconomic and demographic factors. We
found that food insecurity, income, and racial factors (Hispanic vs.
non-Hispanic) are significant predictors of obesity. Bayesian models

verified that obesity is heterogeneous across states and confirmed the

robustness of our linear models.

At the county level, our models revealed that food deserts are more
prevalent in areas with higher concentrations of racial and ethnic mi-
norities. Low-income neighborhoods often lack access to fresh, nutritious

foods and are saturated with fast-food outlets and convenience stores

selling primarily processed foods.

Lastly, we examined the trends in obesity rates over time when con-

trolling for relevant socioeconomic, lifestyle, and race related factors and

found that there is a significant increase in obesity rates by year.

In conclusion, our research suggests that the impact of processed foods

extends far beyond immediate health concerns, perpetuating a cycle of

deepening inequality with long-term consequences for vulnerable popu-

lations. The interplay between food environments, racial demographics,
socioeconomic status, and geographic location paints a complex picture
of food insecurity in America. Our findings underscore the need for

comprehensive, targeted interventions addressing not only processed

foods but also underlying socioeconomic and racial disparities shaping

food environments across the United States.



2 Introduction

The United States is the modern land of abundance. Yet, a crisis festers

within its grimy underbelly: Food deserts.

Figure 1: Obesity Rate trends over the

years by state. Overimposition of Na-

tional Average.

Food deserts are regions with limited public transportation and few

grocery stores, making their residents dependent on processed food as

opposed to affordable fresh food. This is especially true for low-income

households [1] and racial minorities such as Black, Hispanic, and Native

American populations [2] [3], all of which are overrepresented in food

deserts. [4]

It is clear, and perhaps uninspiring, to conclude that processed foods

lead to general negative health outcomes. More crucially, the unequal

distribution of populations in food deserts mean that there are also

strong racial and socioeconomic differences in these outcomes [5], such

as an outsized risk factor for Type-2 Diabetes among the aforementioned

population groups [6]. Food deserts also perpetuate a vicious cycle,

where affected (racial) populations perceive healthy food as "white people
food", leading to decreased demand for healthy food. [7]

That is to say, the true cost of food insecurity is not only the aggregate

impact it has on the health of US population, but also the focused damage

it has on particular communities.

Given that 5-10% of the country’s population can be said to live in food

deserts [8], we want to investigate not only the general country-wide costs

of food insecurity, but also the disproportionate impacts in these areas,

where processed foods are not a lifestyle choice, but a grim necessity.

Figure 2: Visualizing the density of the

percent of the population with low access

between urban and rural counties.

Urban mean: 20.86
Rural mean: 24.41
Cohen’s d: -0.1937

2.1 Motivation & Literature Review

Food deserts in the United States, having only been studied for two

decades [1], are still a relatively young area of research. Although the

causes of food deserts in the US have been well documented, ranging

from the uneven expansion of large-chain supermarkets to changes in

inner-city demographics [9] [10], their broader impacts are still being

explored.

So far, there has been consensus in the medical community that processed

foods are an major contributor to adverse downstream health problems

like Diabetes and Obesity. [11] There are also a growing literature exam-

ining how vulnerable communities disproportionately suffer from the

adverse consequences of processed foods. [12] [5]

We contribute to this line of questioning, hypothesizing that food deserts

contribute to:

1. Poor health, due to the constant consumption of processed foods.

2. Socioeconomic and racial inequality, due to healthcare expenses

and the higher acquisition cost of fresh foods in food deserts.

In this paper, we will explore whether and how food deserts and places

with low food access perpetrate these outcomes, a necessary contribution

to the policy conversation to promote food equity and racial equality.



2.2 Research Questions

We aim to discuss the following questions in sequence:

1. How are processed foods associated with public health outcomes across the
United States?

2. To what extent do socioeconomic factors, racial demographics, and geo-
graphic disparities exacerbate the negative effects of processed food and
lead to health inequities?

3. How can predictive modeling of health trends in vulnerable populations
and geographic areas inform targeted policy interventions?

2.3 Datasets & Variables of Interest

To inform our analysis, we engineered two datasets. The first dataset is a

Cross-Sectional dataset from the CDC United States Diabetes Surveillance

System [13]. This dataset contains data and important variables related to

diabetes prevalence and associated factors for the year 2019 and just prior.

The dataset includes county-level information across various counties

in the United States. We then added data from the Food Environment

Atlas [14]. This included the number of convenience stores, fast food

restaurants, and other relevant variables. We will refer to this dataset as

our Cross-Sectional Data.

For this dataset, we grouped our variables into:

1. Identifiers, such as State and County

2. Food-Related variables, such as the number of grocery stores or

fast food restaurants per 1000 people

3. Health-Related variables, such as the percentage of people diag-

nosed with diabetes, and

4. Socioeconomic and Race-Related variables, such as the Isolation

Index for different racial groups.

The second dataset comprises panel data from 2014 to 2022 acquired

from the County Health Rankings & Roadmaps (CHR) [15]. This dataset

provides county-level health data, allowing for the analysis of trends and

changes across different counties. The time series nature of the data makes

it suitable for examining temporal patterns and determining the impacts

of health interventions over time. We collected time series data from

2014 to 2022, the years in which the Food Environment Index is available,

and selected variables that were available in all 9 years. We then added

control for the county population size from the US Census Bureau and

USDA Economic Research Service as the population estimates available

from the County Health Rankings [16] [14]. Furthermore, we evaluated

the years the key variables were available, which is available in Table 10.

We will refer to this as our Panel Data.



2.4 Non-Technical Summary

Our research reveals significant disparities in health outcomes across
different populations when examining factors such as race, income, and
geographic location. These findings suggest that the health problems

associated with processed foods are deeply intertwined with systemic

inequalities and segregation in our society.

Low-income neighborhoods often lack access to fresh, nutritious foods

and are instead saturated with fast-food outlets and convenience stores

selling primarily processed foods. Our analysis confirms that "food
deserts" are more prevalent in areas with higher concentrations of
racial and ethnic minorities, underscoring the role of race and socioe-
conomic status in health disparities.

Importantly, we found that racial isolation correlates with decreased
food environment quality for most minority populations, but not for
White isolation. This racial divide in food access contributes to the

perpetuation of health inequalities.

Our research indicates that the impact of processed foods extends far

beyond immediate health concerns. The true cost of processed foods lies
in the vicious cycle of deepening inequality, causing health impacts
not only for the current generation of vulnerable populations but
potentially for many generations to come. This cycle is reinforced by

the complex interplay between food environments, racial demographics,

socioeconomic status, and geographic location.

These findings highlight the urgent need for comprehensive, targeted

interventions that address not only food availability but also the under-

lying socioeconomic and racial disparities shaping food environments

across the United States.

2.5 Methodology

2.5.1 Datasets, Cleaning, & Preprocessing

Correlation One Data: We mainly utilized the Correlation One Data

to conduct EDA and form basic hypotheses. For our specific research

questions, however, we found outside sources to be more comprehensive.

The full cleaning and acquisition process can be found in Section 6.2.5.

Cross-Sectional Data: We merged cross-sectional data on 2019 Dia-

betes rates, 2020 Obesity rates, and 19 food-related covariates with a wide

range of socio-economic, racial, geographical, and healthcare-related

controls. Data sources included the CDC United States Diabetes Surveil-

lance System, Food Environment Atlas, County Health Rankings, and the

2018 census [13] [14] [15] [16]. Variables were mostly collected from 2016

to 2020, with some being multi-year averages. To merge datasets with

different column names, we used the fuzzywuzzy string matching library.

Less than 1% of rows contained missing values, which we dropped.

Finally, we normalized and centered the data. This dataset allows us to

examine the interplay between food, health, and various socio-economic

and racial variables. The full cleaning and acquisition process can be found in
Section 6.2.1.



Health Trends Panel Dataset: We collected panel data for U.S. counties

from 2014 to 2022, primarily from County Health Rankings & Roadmaps

(CHR). We manually indexed variables by their collection year, using

the end year for multi-year averages to avoid reverse causality bias. The

fuzzywuzzy library was used to match variable names across years. We

included only variables with less than 500 missing values out of 34,000

rows. Population data was replaced with U.S. Census Bureau figures due

to defects. We corrected for a change in income inequality measurement

in 2017 and fixed misnamed counties. Remaining missing values (2000

out of 30 columns and 34000 rows) were proxied with the latest available

data from the same county. Alaska counties and select counties from

Texas and California were dropped due to missing data. The final dataset

includes 3116 out of 3143 U.S. counties, providing a temporal complement

to our cross-sectional data and serving as a robustness check for our

analysis. The full cleaning and acquisition process can be found in Section
6.2.2.

2.5.2 Modeling

The focus of our modeling approach is making interpretable models, so

qualitative insights can be extracted from them, allowing us to derive

robust conclusions. In order to do so, we employed models of increasing

complexity, examining whether our results were model sensitive. We

build these complexity all on a linear model backbone to maintain the

interpretability of our results.

We focused on exploratory modeling where results from simpler models

motivates us to employ models with more sophisticated functional forms

that controlled for more variables and test whether the relationships

were spurious.

We further champion an iterative cycle between modeling and data

collection, where the findings of our models on a previous dataset

motivates us to collect more data to validate our model’s findings.

To this end, we began by fitting partially linear models to our Cross-

Sectional Data, identifying relationships that we explored further using

hierarchical linear models and by adding interaction terms. Finally, we

examined whether the associations we found are robust over time using

our Panel Data.

Beyond finding relationships between food-related variables and obesity,

our models also find a significant relationship between race, the degree

of racial segregation, and socio-economic status on health outcomes.

Further, we find that these variables significantly interact with each

other. Although beyond the scope of our present study, this motivates a

more nuanced examination of the relationship between food and health

outcomes within the United States, where racial and socio-economic

divides exacerbate, reinforce, and are enforced by processed food.



3 Exploratory Data Analysis

Through our EDA, we seek to explore our hypothesis that geographi-

cal, racial, and food-related factors would have significant association

with health outcomes. Both the health outcomes and the results are

underpinned by the consumption of processed foods.

Figure 3: The production of meat for

processed food (in red) has increased dis-

proportionately over the last 3 decades.

Figure 4: Visualizing the relationship

between number of convenience stores,

a popular location for processed foods,

and the obesity rate by state. Source:

Cross-Sectional Dataset

Figure 5: Low Food Environment Index

and Access to Healthy Foods are predic-

tive of Adult Obesity in a Linear Model,

with Confidence Intervals plotted. 5-fold

cross-validated 𝑅2
0.5915. All variables

standardized.

3.1 General Trends

To investigate the impact of processed foods on obesity, we analyzed the

correlation between convenience stores per 1,000 people and obesity rates.

We hypothesize that the correlation would be positive, as convenience

stores predominantly sell processed food items. Figure 4 confirms this,

showing a positive correlation between the number of convenience stores

per 1,000 people and the relative obesity rate per state.

We additionally utilized simple exploratory models such as a linear

regression to explore the relationship between our variables.

In order to interpret our preliminary results, we would like to first

define a particular key variable of interest - Food Environment Index

(FEI). The FEI generally gives an index of factors that contribute to a

healthy, unprocessed food environment, on a scale from 0 (worst) to

10 (best). This measure includes access to healthy foods by considering

how far the population lives from a grocery store or supermarket, or

other viable locations for fresh food in their communities. The Food

Environment Index is available for both of our datasets, and will be used

as an indicator for Food Deserts in our interpretation of our results.

Furthermore, it also includes income variables to determine the cost bar-

riers for acquiring nutritious food. There is research which indicates that

food deserts specifically are correlated with more health detriments like

obesity, diabetes, etc. as supermarkets traditionally provide healthier and

less processed foods compared to smaller grocery stores and convenience

stores [15].

Our results are displayed in Figure 5. FEI [17] is almost as significant as

physical inactivity in predicting Adult Obesity. The value of the coefficient

implies as FEI increases, the Adult Obesity decreases, and vice-versa.

Furthermore, limited access to healthy foods and food insecurity also

have a relatively large magnitude when predicting Adult Obesity. This

analysis was conducted using our Panel Dataset.

This surprisingly significant relationship, along with the high significance

of variables related to race and socio-economic status indicates and

supports our hypothesis of the relationship between availability of

healthy food, socio-ecoonmic and racial factors, and health.

The figure also corroborates research that indicates that food deserts

specifically are correlated with more health detriments like obesity,

diabetes, etc. as supermarkets traditionally provide healthier and less

processed foods (Higher FEI) compared to smaller grocery stores and

convenience stores (Lower FEI) [18] [15]. This lended confidence in our

direction of exploration and encouraged us to build more complex models

to fully capture these complex relationships.



3.2 Variable Analysis

3.2.1 Race-Based Factors

(a) High Isolation (>0.5) Mean FEI: 7.51
Low Isolation (≤ 0.5) Mean FEI: 6.37

(b) High Isolation (>0.5) Mean FEI: 6.57
Low Isolation (≤ 0.5) Mean FEI: 7.48

(c) High Isolation (>0.5) Mean FEI: 6.77
Low Isolation (≤ 0.5) Mean FEI: 7.45

We put a large amount of the focus of our EDA on racial factors and how

they influenced the availability of healthy food. This analysis aimed to

provide information on which populations were most affected by the

increase in processed food availability.

We found statistically significant differences in the mean food envi-

ronment index between high and low levels of isolation for the races

studied (White, Black, Hispanic). Interestingly, for all populations ex-

cept White, as isolation increased, the food environment index tended

to decrease. This finding provides significant insights into the racial

divide and its impact on populations’ access to food. We illustrate this

relationship in Figure 3.2.1. The Race Isolation Index measures the extent

to which minority members are exposed only to one another, and is

computed as the minority-weighted average of the minority proportion

in each area [16]. This analysis was conducted on our Cross-Sectional

Dataset.

To further investigate the racial disparities, we conducted pairwise t-

tests on each population pair (White - Black, Black - Hispanic, White -

Hispanic) when highly isolated. The results, shown in Table 1, revealed

that the Black-Hispanic pair was the only one that did not exhibit a

significant difference.

The findings motivated us to include additional racial factors in the Panel

and Cross-Sectional Data that we collected.

Food Env. Index Group 1 Mean Group 2 Mean p
White vs. Black 7.51 6.57 0.000

White vs. Hispanic 7.51 6.77 0.000

Black vs. Hispanic 6.57 6.77 0.195

Table 1: Pairwise T-Tests Comparing High Isolation Areas

3.2.2 Geographic Factors

Finally, we examined the effect of geographic locations by comparing

the distribution of low food access in urban and rural areas. We found

a significant difference between these two populations, as illustrated

in the density plot in Figure 2. While it may seem at first that urban

populations have a higher percent of low food access, when taking into

account the rural population’s heavy tail, the mean becomes weighted

towards rural, with a statistically significant difference between the two

population means.

These findings highlight the complex interplay between racial, geographic,

and socioeconomic factors in determining access to healthy, unprocessed

food options and their potential impact on obesity rates. Furthermore,

they show the detriment that processed foods have been having on

specific communities. These explorations increased our confidence in

exploring geographical factors as a strong variable that interacts with the

relationship between processed foods and health.



4 Modeling

As mentioned in section 2.5.2, we initially produced exploratory models

that then motivated further data collection and sophisticated models. To

this end, we used a 4-step approach:

1. First, we fitted a partially linear model to the Cross-Sectional Data,

capturing interpretable linear relationships and existent non-linear

relationships. [19] We did this on the country and state-level, and

also fit a basic hierarchical linear model to state-level data where

each state’s parameters are drawn from a country-level distribution

(thus accounting for differences between states as well as country-

level effects). [20]

2. We expanded on the hierarchical structure of our dataset through

Bayesian methods and using a 3-level hierarchy, where Counties

exist in States, and States exist in the Country. [21] This increases

the statistical power of our model as we are accounting for state

and country-level confounding variables.

3. We then added interaction terms between key variables in our

regression to test the robustness of the associations between

food-related variables and health outcomes with a difference-

in-difference style approach. [22]

4. We find that our analysis on the cross-sectional dataset gave strong

indications of a relationship between food related variables and

health outcomes, even when controlling for confounding variables.

This motivated us to examine whether this association is robust
over time, which led to us incorporating our 10-year Panel Dataset.

We will first describe how we dealt with variable transformation and

selection, before going in detail about our approach.

4.0.1 Variable Transformation

We standardized all of our model response and prediction variables to

have mean 0 and variance 1 to put them on the same scale. This allows

for more interpretable coefficients.

When the outcomes that we are predicting are in percentages, we also

attempted beta regression, a generalized linear model that predicts

outcomes in [0, 1]. [23] However, we found that our beta regression

and linear regression had similar 𝑅2
, with linear regression performing

marginally better in most cases.

Since the ordering of variable coefficients remained nearly identical

for both models, we choose to focus on linear regression because of the

greater interpretability of the linear regression results.



4.0.2 Evaluation Metrics

We used out-of-sample (OOS) 𝑅2
and as well as MSE as ways to evaluate

our models. This allows for a interpretable metric and prevents model

over-fitting.

For the Bayesian models evaluated, we used the median of the Bayes 𝑅2

metric which extends the traditional 𝑅2
by defining 𝑅2

as

𝑅2 =
Var(�̂�)

Var(�̂�) + Var(𝜖)

where:

▶ Var(�̂�) is the variance of the fitted values,

▶ Var(𝜖) is the variance of the residuals.

In a Bayesian context, this quantity is a random variable. By taking the

median, we have a robust measure that has a similar interpretation to 𝑅2

[24].

Because of the difficulty of evaluating Bayesian models, we use our

Bayesian models mainly to explore the relationships in data with com-

plex functional forms that other statistical methods cannot handle, but

our substantive conclusions do not rely on Bayesian methodology. Conse-
quently, Bayesian modeling was largely utilized as a robustness check.

4.0.3 Regularization & Bayesian priors

Due to the moderate multicollinearity in our predictors as in Figure

7, in our state-level and country-level modeling for our cross-sectional

analysis, we found that unregularized linear regression tends to overfit

(See Table 1 Below), with LASSO regression producing better 5-fold

cross-validated OOS (Out of Sample) 𝑅2
values. Employing a grid search,

we determined that the best regularization constant was 𝛼 = 0.1.

Figure 7: Correlation Heatmap (predic-

tors). Note the moderate multicollinear-

ity.

We employed LASSO compared to other common regularization tech-

niques because of the ability for LASSO to set variable coefficients to 0

and has a natural interpretation of the coefficient being less than a certain

parameter-specific threshold.

In the cross-sectional hierarchical modeling phase, we found that al-

though LASSO led to less overfitting, it also led to a noticeable decrease

(0.02) in 5-fold cross-validated 𝑅2
with parameters determined by grid-

search. Therefore, we did not employ LASSO in that context.

For our panel data, since the variables are much more carefully curated,

as only important variables had wide availability on the longer time

horizon, we found that the OOS 𝑅2
was not noticeably different from the

in sample 𝑅2
, and there was no need for regularization.

We chose not to use dimensionality reduction techniques like Principle

Component Analysis (PCA) because the transformation in feature space

that it performs decreases the interpretability of our models and the

qualitative insights that we can draw from them.



Outcome 5-fold Cross-Validated Mean 𝑅2
In Sample 𝑅2

Newly Diagnosed Diabetes Rate 0.418591 0.4552656

Diagnosed Diabetes (%) 0.6275559 0.6521494

Obesity Percent 0.4968842 0.5366824

Table 1: (Unregularized) Linear Regres-

sion Model 𝑅2
Values.

For the Bayesian models, we perform variable selection through using

weakly regulatory Gaussian priors. Due to the ability to incorporate

parameter uncertainty, over-fitting is less of a concern for Bayesian

models. [20]

4.1 Country and State-Level Modeling

For these models, we used our food-related variables as predictors for

health and socioeconomic outcomes to examine the impact of food

insecurity on these areas. One model was fitted per response variable.

The model we used is partially linear:

1. We first used LASSO regression to elicit any linear relationships.

2. Then we fitted a Random Forest regression model to the residuals,

identifying any nonlinear relationships.

3. We test the robustness of the relationships that we found by includ-

ing relevant control variables, and still find a significant relationship

between food-related predictors and response.

The partially linear regression assumes a flexible functional form as

follows:

𝑌𝑖 = 𝛽0 +
𝑛∑
𝑗=1

𝛽 𝑗𝑋𝑖 𝑗 + 𝑔(𝑋𝑖) + 𝜖𝑖 ,

where 𝑔(𝑋𝑖) is a function that captures the nonlinear, nonparametric

component that depends on the predictors𝑋𝑖 , allowing for a more flexible

relationship between 𝑌𝑖 and 𝑋𝑖 . Here 𝑔(𝑋𝑖) is estimated by a random

forest. The linear form allows for interpretability, whilst the random

forest allows for detection of non-linear relationships.

4.1.1 Country-level Modeling (Completely Pooled)

(a) We see a positive linear relationship

with food insecurity and food benefits

(an indicator for low household income),

and a negative one with full-service

restaurants (which provide fresh food).

(b) We see a general negative relation-

ship between supercenters (which pro-

vide fresh groceries) and diabetes, after

an initial spike - likely because areas with

zero supercenters have low to zero pop-

ulation.

Figure 8: Model results for predicting Di-

agnosed Diabetes (%). OOS 𝑅2
(LASSO):

0.20. OOS 𝑅2
(LASSO and Random For-

est): 0.50. Note that the nonlinear esti-

mates significantly improved model per-

formance.

Our Cross-Sectional Dataset divides our variables by state. The most

direct way to examine the general costs of food insecurity and food

deserts is to disregard these divisions and treat all the datapoints as

draws from the same distribution, hence ’completely pooling’ them.

For each group of response variables, we see results that correlate

food insecurity with negative health and socioeconomic/racial equality

outcomes. We select two examples to examine here, although all the

regression results can be found in our codebase.

We first examine our regression results for diabetes, a key health outcome.



For the LASSO part of the model (Figure 8a), diabetes has a positive

linear relationship with food insecurity and food benefits (indicating

lower income), and a negative relationship with full-service restaurants

(sources of fresh food for higher-income households). This is as expected.

Examining the most important factor in the Random Forest with a partial

dependence plot (Figure 8b) reveals that convenience stores, which supply

processed food, are also positively correlated with diabetes, though the

relationship appears logarithmic.

Next, we examine our results for overall Social Vulnerability Index (SVI),

to elicit any general country-level relationships. The SVI refers to the

index which combines several demographic and socioeconomic factors

like poverty, lack of transportation, etc. that adversely impact people [13].

For the LASSO part (Figure 9a), food insecurity has a positive linear

relationship with overall SVI, which is as expected.

(a) There is a strong linear relationship

between overall SVI and food insecurity.

(b) However, the partial dependence

plot - reminiscent of Simpson’s paradox -

might suggest that different relationships

between overall SVI and food insecurity

exist among different populations.

Figure 9: Model results for predicting

Overall SVI (%). OOS 𝑅2
(LASSO): 0.52.

OOS 𝑅2
(LASSO + Random Forest): 0.65.

However, for the Random Forest part (Figure 9b), we see evidence of

overfitting. Food insecurity was also identified as the top factor by the

Random Forest model. But when we examine the partial dependence plot,

we see that the overall SVI initially decreases with food insecurity, before

sharply increasing, and then decreasing again. This might suggest that

different relationships between the two variables exist among different

geographies or social groups, motivating a state-level analysis.

4.1.2 State-level Modeling (Unpooled)

Figure 10: Downward trend in model

MSE vs. Diagnosed Diabetes (%) by state,

implying that food-related variables are

better predictors of diabetes for states

with higher diabetes prevalence.

At the state level, we noticed a trend that our models tend to have better

performance when predicting health and socioeconomic outcomes for

states that are worse-off in terms of those outcomes.

We formalized this intuition by scatterplotting MSE against response

variable values for all states. We see, for example, in Figure 14 that when

used to predict the % of people with diagnosed diabetes, food-related

variables are better signals in states with higher diabetes prevalence.

Similar patterns were seen for other response variables.

This implies that lower food security is more linked to negative outcomes
in states that are worse-off, which could potentially be a manifestation of

the outsized impacts of food insecurity and the proliferation of processed

foods in food deserts.

However, some states have less data than others, which could also have

affected model performance. Additionally, in both this and the previous

section, we did not control for other non-food-related variables’ effects

on our target variable.

Hence, we finally move on to hierarchical modeling, which allows us to

model state-level relationships without sacrificing the rest of the out-of-

state data for any given state. When producing these models, we also

regress on the other non-food-related variables not used as the response

variable so as to control for their effects.



4.2 Hierarchical modeling (Partially Pooled)

Motivated by our findings on country-wide associations and state-level

differences in the previous exploratory phase, we modelled the hierar-

chical structure of our dataset, where counties were nested inside States

inside a Country, by assuming that there are both country-wide and

state-level effects by adding state-dummies into our regression. [21]

In the hierarchical modeling approach, we did not include the random

forest regression on the residuals in order to improve the interpretability

of our results. Further, the inclusion of dummy variables provides for our

models non-linear modeling capacities, making an additional non-linear

model for the residuals unessential. Indeed, we find that the hierarchical

modeling approach significantly increases the𝑅2
of our models compared

to the linear step on our partially linear model.

Compared to the state-level analysis, this increases the statistical power of

our model as we are using more observations, whilst we are accounting for

state-level confounding variables unlike the complete pooling approach.

We then added interaction terms between key variables in our regression

to test the robustness of the associations between food-related variables

and health outcomes with a difference-in-difference style approach. [22]

By including state-fixed effects, we have the following equation for our

regression:

𝑌𝑖 = 𝛽0 +
𝐽∑
𝑗=1

𝛼 𝑗𝐷𝑖 𝑗 +
𝐾∑
𝑘=1

𝛽𝑘𝑋𝑖𝑘 + 𝜖𝑖

where 𝐷𝑖 𝑗 is a dummy variable that takes the value 1 if county 𝑖 is in state

𝑗 and 0 otherwise, and 𝛼 𝑗 represents the fixed effect for state 𝑗. Here, 𝐽 is

the total number of states minus one (to avoid perfect multicollinearity).

By including the state-level hierarchical model, we remove the differences

in state-level baseline obesity rates that affect our parameter estimates.

This allows us to obtain a more accurate estimate of the relationship

between our covariates X and our response Y.

Indeed, we observe that OOS 𝑅2
improved when running the state-level

regression to 0.65 compared to the unpooled 𝑅2
of 0.63. This indicates

that there are state-level effects that we did not control for, supporting

the validity of our hierarchical modeling approach.

Diagnosed Diabetes (%) out-of-sample R2 In Sample R2

Linear Regression 0.6275559 0.6521494

Fixed Effect Model 0.6517992 0.6820664

Table 2: Comparison of R
2

values for Lin-

ear Regression and Fixed Effect Models.

One limitation of hierarchical modeling is the absence of convenient

regularization techniques. We found through a grid parameter search

using LASSO implemented hierarchical models that although it reduces

the difference between in sample and out-of-sample𝑅2
, the out-of-sample

𝑅2
remains lower than simple linear regression [25].



We then employed Bayesian fixed effect modeling with weakly regulatory

priors to examine whether the relationships change as a robustness check

[20]. We find little difference in the fixed-effects regression and Bayesian

estimates. We further found that the Bayes 𝑅2
is within 0.01 range from

the fixed effects regression. Due to the difference in interpretation be-

tween the 2 𝑅2
measures, and the similarity in the results of the two

models, we do not determine which model coefficients are more accurate,

but take their convergence as a positive indication for the robustness of

our results that these 2 different modeling approaches arrive at the same

relationships. Below shows statistically significant results that we found:

Variable Estimate Std Error
Physical Inactivity Percent 0.5189 0.0189

Isolation Index Non Hispanic White 0.2275 0.0874

Children In Poverty -0.2257 0.0613

Poverty Percent All Ages 0.1777 0.0642

Single Parent Households Percent 0.1094 0.0449

Multi Unit Structures Percent 0.0897 0.0379

Snap Participating Percent -0.0885 0.0403

Isolation Index Non Hispanic Native 0.0787 0.0218

Isolation Index Non Hispanic Asian 0.0737 0.0361

Severe Housing Cost Burden Percent -0.0698 0.0283

Severe Housing Problems 0.0603 0.0264

Unemployment 0.0573 0.0253

Percent Females 0.0515 0.0211

Driving Alone To Work 0.0464 0.0230

Poverty Estimate All Ages 0.0449 0.0222

Food Bank Number 0.0333 0.0165

Table 3: Estimates and Standard Errors

for Hierarchical State-Level Fixed Effect

Modeling for Predicting Percentage of

County Population that is Obese. Sig-

nificant race and socio-economic effects

were found. Food-related policy inter-

ventions were found to be effective.

We see that segregation and socio-economic status are significant indi-

cators of high obesity rates, with Food Banks and SNAP both having a

significant contribution in reducing obesity. This confirms our hypothesis

in the contribution of race and food related variables in our analysis.

Policy interventions also has an effect on reducing obesity rates even

when controlling for relevant confounding variables.

At last, in order to examine the interaction between selected covariates and

geographical location, we include interaction terms between the selected

covariates and states. It has a difference-in-difference interpretation that

leads to qualitative insights about policy implications. [22]

𝑌𝑖 = 𝛽0 +
𝐽∑
𝑗=1

𝛼 𝑗𝐷𝑖 𝑗 +
𝐾∑
𝑘=1

𝛽𝑘𝑋𝑖𝑘 +
𝐽∑
𝑗=1

𝐾∑
𝑘=1

𝛾𝑗𝑘(𝐷𝑖 𝑗 · 𝑋𝑖𝑘) + 𝜖𝑖

Because of the amount of interaction terms that is added, interaction

terms are only added for Food Environment Index and race-related

Isolation Indices.

The added 𝛾𝑗𝑘 coefficient for the interaction term of represents how the

difference in obesity a difference in 1 unit of FEI will predict, given that

all the other socio-economic-racial-geographic control factors remain the

same, and that the county is in the same state 𝑗 as another county. Thus, it

measures the difference in obesity outcome of a county in the same state



with another county in the same state with a different FEI value.

Given this interpretation, the 𝛾𝑗𝑘 coefficients being significantly away

from 0 would indicate that there are certain policies that some states

are implementing that other states are not, which helps disadvantaged

communities cope with their lack of food.

We implemented this functional form by using default weakly regulatory

Bayesian priors, as standard linear regression techniques does not support

the large number of variables that this approach adds. We see that there

are indications that 𝛾𝑗𝑘 is different from 0. However, we acknowledge that

we have wide credible intervals (Bayesian confidence intervals) because

of our small sample size. Notibly, we see that in the interaction terms

between state dummies and FEI, the most significant coefficients are for

Alabama and Tennessee. These were states that we know have a high

concentration of food deserts, which gives us confidence in collecting a

larger panel dataset that would have enough statistical power to detect

these relationships.

4.3 Panel Data Modeling

In our panel data, we exclusively use percentage of adults that are obese

as our outcome variable, as this was the most available response variable

in the dataset. While we initially intended to apply time series forecasting

methods such as Vector Autoregression (VAR) and deep learning models

like Long Short-Term Memory and Transformers, the limited temporal

resolution of our dataset made this infeasible, as observations are only

on a yearly basis. We had insufficient data to train and validate a VAR

model as well as deep learning models, let alone capture seasonality or

other fine-grained trends.

We found that more traditional statistical methods for panel data per-

formed better for our dataset, and our approach is similar with the

approach we took for cross-sectional data, but the addition of panel data

enables us to model the effects of individual year on obesity. This in-

creases both the robustness of our results by controlling for confounding

variables along the time axis, and also makes our results more inter-
pretable, as the year effects we found has the natural interpretation of

the general trend of obesity in United States counties, after controlling for
relevant poverty, socio-economic, lifestyle, and race-related factors.

We found that our results are consistent with our findings in the cross-

sectional data, and that in our panel dataset, the coefficients of food-

related variables are magnified. After performing a sensitivity analysis

on our cross-sectional dataset, we found that this is due to the lack of

racial segregation indicator (isolation index) in our panel data. When

we removed isolation index in a pooled linear regression, we find that

the coefficients for FEI went from −0.0683 to −0.0961, and for Limited

Access to Health Foods, from −0.0268 to −0.0425, with the same standard

errors. This confirms our hypothesis that racial segregation and food deserts are
inextricably linked in their relationship to health. Further, we found that there

were concerning trends in the year effects on obesity. Although out of the

scope of the present study, this supports the importance of examining

policy interventions that could slow down or reverse the present trend

of rising obesity rates.



4.3.1 Linear & Hierarchical Models

In our panel data, we found that unlike the cross-sectional dataset, linear

regression and hierarchical linear regression with state fixed effects.

Further, although we have much fewer variables, our in-sample and

out-of-sample 𝑅2
are similar to the Cross-Sectional dataset. This gives

promising indication that we have captured important variables related

to the temporal dimension and have not lost major predictive variables

that had limited temporal availability. However, we acknowledge that

we are predicting percentage obese in the total population in the cross-

sectional data, which may lead to a difference in the interpretation of

𝑅2
metric. Because our panel data had a larger sample size, we were

Model In Sample R2 Cross-Validated R2

Linear Regression (LR) 0.593 0.592

LR + Year + State 0.702 0.700

LR + Y + S + FE + SI 0.712 0.703

Table 4: Comparison of R
2

values for

different models. We observe little over-

fitting. Note: FE + SI = Fixed Effects and

Selected Intervention Terms. We only

added interaction terms between Food

Environment Index and State Dummies.

able to include interaction terms between Food Environment Index and

State Dummies. We did not include more interaction terms to avoid

model over-fit, which has begun to happen Table 5. We found that whilst

our more sophisticated modeling approaches improved upon the 𝑅2

significantly, the ordering in the importance of the coefficients remained

the same. Therefore we include the coefficients for the model with all the

interaction terms, as it had a marginally higher cross-validated 𝑅2
.

We found that after controlling for lifestyle, food-related variables were

the most significant, along with income and race-related variables. Strik-

ingly, the Food Environment Index is almost as significant as Physical

Inactivity in affecting obesity after controlling for relevant confounding
variables.

Table Name: Coefficients and Confidence Int for Interaction Dummies

Term Estimate Lower Upper
Physical Inactivity 0.355031 0.343260 0.366872

Food Environment Index -0.354640 -0.446698 -0.262787

Percent Non Hispanic White -0.285615 -0.305277 -0.266046

Food Insecurity -0.242270 -0.304249 -0.180235

Limited Access To Healthy Foods -0.238277 -0.296331 -0.180324

Median Household Income -0.197294 -0.240305 -0.154664

Percent Hispanic -0.187654 -0.208942 -0.166404

Table 5: The most important variables in

predicting percentage of adults obese in

US counties. It is striking that the Food

Environment Index is as significant as

Physical Inactivity in predicting Obesity

Rates. There is a natural drop after the

these first 7 with the next most important

variable having a coefficient of −0.11.

At last, we see that with the increased sample size in panel data, we could

see significant state-level heterogeneity. 20 out of 50 of the interaction

terms ’coefficient were statistically significant. We found much more

significant coefficient estimates than our exploratory Bayesian hierarchi-

cal modeling on the cross-sectional dataset, where the highest absolute

estimate of our parameter was 0.14 for Alabama due to the larger sample

size and higher statistical power of the panel dataset.

We further see that there is correlation between state obesity rates and

the Difference in Difference (DiD) coefficient estimates of our interaction

terms. This implies that in states with lower baseline obesity rate, the



Term Estimate Lower CI Upper CI

Maine -0.309426 -0.454145 -0.186075

Florida -0.209377 -0.260307 -0.159540

Alabama -0.132654 -0.170589 -0.094139

New Jersey -0.116294 -0.199016 -0.031175

Maryland -0.106998 -0.175540 -0.037400

Illinois 0.109832 0.068995 0.153825

Oklahoma 0.110996 0.064462 0.156677

Table 6: Table of estimates with their cor-

responding lower and upper confidence

intervals.

difference in obesity rate between counties with higher food environ-

ment index and lower food environment index is greater. However, the

correlation is weak and more data collection and modeling efforts should

be done to disentangle this complex effect.

Figure 11: There are weak to moderate

associations between the difference in

difference interaction term estimate be-

tween State Indicator and Obesity with

State Obesity Rates, implying that in

states with lower baseline obesity rate,

the difference in obesity rate between

counties with higher FEI and lower FEI is

greater. State-level policies should there-

fore be considered.

At last, we note that our modeling approach also produces qualitative

insights on the trends of obesity in the United States. We see that after

controlling for all factors, the fixed year effect on county-level obesity

rates increases steadily. Further, the significance in the fixed year effects

means that there are significant uncaptured effects on the residuals of a

simple linear model without year. This increases the need for further

examination of the relationship between Food Environment Index, Race,

Socio-economic Status, and Obesity.

Figure 12: Controlling for relevant socio-

economic, race, health, and lifestyle re-

lated factors, we still see a significant

increase in year effect on obesity.

4.3.2 Bayesian Models

At last, we use Bayesian Modeling to verify the robustness of the results

we got from our hierarchical linear regression. We examine the target

variable in isolation by creating a hierarchical model where state-level

observations are drawn from distributions parameterized by national-

level hyper-parameters. We used Normal and Half-Normal priors as is

standard in this case.

We see that the Monte-Carlo Markov Chains used to draw samples

from our Bayesian model converge well (evidenced by the ’fuzziness’

of the trace plots on the right). More importantly, consider the plot

for state_prior_means (Left, 2nd From Bottom). This plot visualizes

the distributions of the average obesity prevalence in each state, one

bell curve per state. We see that different states have vastly different

distributions for average obesity prevalence, verifying that this variable

is indeed heterogenous across states.



Figure 13: Markov Chain Monte Carlo

trace plots for estimating the distribu-

tions in our hierarchical model.

Secondly, to examine predictive robustness, we also fitted a Bayesian

linear regression counterpart to the models described in the previous

section. It had a Bayes 𝑅2
of 0.7503988, and had coefficient estimates

similar to the hierarchical model, with the same ordering of the important

coefficients. Due to the similarity of the results, we do not include the

results table below, but note that this is another positive indication for

the robustness of our findings.

4.4 Discussion

We find that lack of access to unprocessed, healthy foods and mitigating

the effects of processed foods is a multifaceted issue that needs multiple

perspectives to resolve. Our analysis of the Food Environment Index (FEI)

shows that as FEI increases, there is a large increase in health detriments

such as Diabetes and Obesity, with disproportionate impact on areas

with low income and high degree of segregation.

Figure 14: Displays the differences in

Obesity Rate by State, encouraging a

state-based policy.

One crucial policy recommendation is for the government to provide

subsidies to supermarkets and super-centers to open in areas where there

is largely low food access. Our findings heavily indicate that additional

supermarkets are outlets for healthy, unprocessed foods like fresh fruit

and vegetables, and they correlate to less diabetes. However, these policies

should be on a state-government level, as our analysis revealed state-

level patterns are much more discernible. In addition, there are several

differences across states, as shown by Figure 14.

Expanding and enhancing the Supplemental Nutrition Assistance Pro-

gram (SNAP) is another crucial strategy. Our analysis found that SNAP

participation was more likely and correlated with lack of food access. This

indicates that the SNAP programs are targeting the correct populations.

It has been found that SNAP reduces the overall prevalence of food

insecurity by as much as 30%, with even more substantial reductions in

populations who are the most vulnerable [26].



5 Conclusion

Processed and unhealthy foods have been rampaging throughout Amer-

ica, and they have been particularly negatively affecting minority and

rural communities. It is paramount to recognize the intricate connec-

tion between malnutrition, poverty, geography, and race in America.

Addressing food access issues which lead to the significantly increased

consumption of processed foods extends far beyond merely providing

healthy food options; it requires us to rethink and stop the vicious cycle

that perpetuates both poverty and poor nutrition, especially in the most

vulnerable populations.

Our analysis supports that a comprehensive state-based system would be

the most effective in mitigating and stopping food insecurity, as state-level

impacts are much more intuitive and predictable than considering the

entire United States at once. Current programs such as SNAP and WIC

(Women, Infants, and Children Nutrition) are broad steps in the right

direction, but they are merely the beginning of a more targeted and

robust effort.

The results of our analysis compel to to confront a profound ques-

tion: Are processed foods truly the root of the issue, or are they a dark
consequence of more deeper, systemic issues? Our findings suggest

that the prevalence of processed foods and the health consequences asso-

ciated with them may be a symptom of entrenched food inequality. This
realization challenges us to shift our perspective from simply vilifying
processed foods to addressing the fundamental societal structures that
create and perpetuate food deserts, limit access to fresh produce, and
trap communities in cycles of poor nutrition [27]. It forces us to consider

the connection between race, class, and geography when shaping our

food landscapes.

Moving forward, it is important for us to take a comprehensive ap-

proach to food justice, urban planning, and social equity to make sure

that access to unprocessed, nutritious food is not just determined by

one’s zip code, race, or income level, but rather recognized and protected

as a fundamental human right.



6 Appendices

6.1 Appendix 1: Variable descriptions for Cross-Sectional
and Panel dataset

Food Related Variables

Enrolled in Free or Reduced Lunch (%)

Farmers Market Rate

Fast Food Restaurants Rate/1000

Food Bank Number

Food Environment Index

Food Insecurity (%)

Limited Access to Healthy Foods (%)

Soda sales tax Retail store (%)

Grocery Stores Available

Grocery Stores Per People

Supercenters Available

Supercenters Per People

Convenience Stores Available

Convenience Stores Per People

Special Stores Available

Special Stores Per People

Full Service Restaurants Available

Full Service Restaurants Per People

Snap Participating (%)

Table 7: Predictors (food-related vari-

ables)



Non-Food Related Variables

Primary Care Physicians Rate

No Health Insurance (%)

Isolation Index Hispanic

Isolation Index Non Hispanic American Indian Alaska Native

Isolation Index Non Hispanic Asian

Isolation Index Non Hispanic Black

Isolation Index Non Hispanic Native Hawaiian Other Pacific Islander

Isolation Index Non Hispanic White

Rent of household income Proportion

Severe Housing Cost Burden (%)

Vacant housing units Proportion

Access to Exercise Opportunities (%)

Overall SVI (%)

Overall Socioeconomic Status (%)

Below Poverty (%)

Unemployed (%)

Income Vulnerability (%)

No High School Diploma (%)

Overall Household Composition Disability (%)

Aged 65 or Older (%)

Aged 17 or Younger (%)

Civilian with a Disability (%)

Single Parent Households (%)

Overall Minority Status Language (%)

Minority (%)

Speaks English Less than Well (%)

Overall Housing Type Transportation (%)

Multi Unit Structures (%)

Mobile Homes (%)

Crowding (%)

No Vehicle (%)

Group Quarters (%)

Commute >= 60 minutes (%)

Public Transportation (%)

Urban Indicator

Overall Socioeconomic Status

Population

Poverty Estimate All Ages

Poverty (%) All Ages

Median Household Income

Table 8: Predictors (non-food-related

variables)

Health-Related Outcomes

Diagnosed Diabetes (%)

Newly Diagnosed Diabetes Rate

Obesity (%)

Physical Inactivity (%)

Table 9: Response Variables (health-

related outcomes)



Panel Data Variable (%) Available Years Breaks
Adult Obesity 2007–2021 None

Uninsured Adults 2005–2021 None

Unemployment 2008–2022 None

Children in Poverty 2007–2022 None

Some College 2005–2022 None

Children in Single-Parent Households 2005–2022 None

Diabetes Prevalence 2008–2021 None

Physical Inactivity 2008–2021 None

Median Household Income 2008–2022 None

Driving Alone to Work 2005–2022 None

% Below 18 Years of Age 2009–2022 None

% 65 and Older 2009–2022 None

% Asian 2009–2022 None

% Native Hawaiian/Other Pacific Islander 2009–2022 None

% Hispanic 2009–2022 None

% Not Proficient in English 2009–2022 None

% Females 2009–2022 None

% Rural 2000–2010 None*

Uninsured 2005–2021 None

Limited Access to Healthy Foods 2006–2019 None

Uninsured Children 2008–2021 None

% Non-Hispanic White 2009–2022 None

Food Environment Index 2010–2021 None

Access to Exercise Opportunities 2010–2023 None

Alcohol-Impaired Driving Deaths 2008–2021 None

Severe Housing Problems 2006–2020 None

Long Commute - Driving Alone 2008–2022 None

Food Insecurity 2011–2021 None

Population 2009–2022 None

Table 10: Variable Availability Analysis

6.2 Appendix 2: Full Cleaning Procedure

6.2.1 Cross-Sectional Dataset

After formulating our hypothesis, we merged a cross-sectional data with

2019 Diabetes rates and 2020 Obesity rates and 19 food related covariates

like "Food Environment Index" (accessibility of healthy foods), "Food

Insecurity" (availability of food in general), and "Fast Food Restaurants

(Rate/1000)". It also includes a wide range of socio-economic, racial

segregation, age, geographical, educational, housing, transportation, and

healthcare-related controls in order to examine the interplay between

processed food, health, and socio-economic and racial covariates.

After downloading and merging every variable near the 2019 range from

the CDC United States Diabetes Surveillance System, we fetched data from

the Food Environment Atlas and merged variables containing information

on grocery stores, super-centers, convenience stores, restaurants, and

SNAP participation. We also fetched population data for each of the

counties, and added in income data from the 2018 census. Furthermore,

we added variables missing from this dataset which were present in our

Panel Data, which were originally retrieved from County Health Rankings.

We predict Obesity Outcomes from 2020 and Diabetes outcomes from

2019 as this was the latest year at which there were comprehensive

data available on all food-related variables. Our variables were mostly



collected from the year 2016 to 2020, with some being multi-year averages.

We could not collect covariates contemporaneous with health-related

outcomes that we wish to study because many of the covariates are not

collected yearly, and some had high missingness in certain years. We note

that this temporal difference would bias the relationship of our variables

with health outcomes towards 0, and have attempted to find as many

contemporaneous variables as possible. In order to merge these datasets,

which often have different column names due to being compiled from

different sources, we utilized a string matching library, fuzzywuzzy, and

created a final fully merged data-frame. We found that there were less

than 1% of rows with NaNs in our dataset, so we dropped the missing

rows.

6.2.2 Panel Dataset

In order to examine examine the relationship between processed food

and health across time, we collected an panel data of each county in the

United States from 2014 to 2022. It contains less controls than the cross-

sectional data as there are limited availability of many of these controls

over the longer time horizon, but complements the cross-sectional data

with an added temporal component. The use of both datasets in tandem

act as a robustness check on our final results.

The Panel Dataset was largely acquired through the County Health

Rankings & Roadmaps (CHR) yearly data [15]. In order to acquire all

variables of interest, each year’s documentation from 2014 to 2022 was

searched. Since many of the variables used in CHR were from previous

years due to limited availability, we manually indexed each variable

from each year’s data by the the year it was collected and sorted this

information into a dictionary to map each variable to their corresponding

year. If the variable is a multi-year average, we chose the end year for the

variable. This process ensures that we have the most accurate collection

of the health related variables of each year, and choosing the upper

bound ensures that the relationships we find between our covariates and

outcomes would not be biased by reverse causality in time. At last, we

used fuzzywuzzy to match dictionary names throughout different years

and combine them to create a final dataframe.

We then examined the variable availability and determined that more than

half of the variables were not present before 2014, and therefore curated

our Panel Dataset from 2014 to 2022. We included only variables with

less than 500 missing values in the whole time-span out of 34, 000 rows

in order to not introduce substantial bias into our analysis. Afterwards,

we performed outlier checks through histogram plots and found that

the population counts were defective. Therefore we replaced the County

Health Rankings population data with population data from the US

Census Bureau. We also found that the way income inequality was

measured changed on 2017, and differences by a factor of 100, and

corrected for this change. During the quality assessment, we further

found that many counties were misnamed (with "County" represented as

"Count" or "Co"), and replaced them with their correct names. After these

changes, we were left with 2000 missing values in total in a dataset of 30

columns and 34000 rows. Due to the sparsity of missing values, we proxy

the missing values with the latest available values from the same county

in a previous year. After this, we still observe that a significant number



of county-level measurements are missing from Alaska in all years, and

dropped them from our analysis. There were also select counties from

Texas and California that were dropped. We keep in mind the potential

for this to introduce bias. However, we believe that since we only excluded

27 counties from our analysis, In total, our final dataset contain 3116

counties out of the 3143 counties in the United States.

6.2.3 County Health Rankings & Roadmaps Analytic Data, 2012-2022

The variables were renamed so they are consistent with each other

across the years. "Binge Drinking" was changed to "Excessive Drinking".

Some variables had punctuation and other special symbols which was

not consistent with their naming throughout the years, this was also

renamed through a string match. Furthermore, as previously mentioned,

the string library fuzzywuzzy was used to match up columns. This was

then sanity checked, as we had the library match columns and then

printed asking us whether these two columns were actually the same.

Depending on the answer, we renamed the column or we added it as a

unique column to our list of columns. We then merged everything by year

and column names and ended with one large dataset which contained

variables that spanned a range of 2012 to 2022. We then further compared

some of the columns to the actual year dataset, in order to check whether

the data was correct. Finally, we sanity checked the data itself by plotting

and describing various distributions of the variables, ie. making sure

that population was not over a certain value for the counties.

We fetched out data from County Health Rankings (CHR) for the CHR

CSV Analytic Data for each year [15]. Then, for each year, we used the

CHR Analytic Data Documentation to map the variables to the years for

which they were collected, as many variables from different previous

years were used in a year’s CHR Analytic data due to limited availability.

6.2.4 County Health Rankings

* % Rural uses 2010 data for all years after 2010.

Notes:

▶ "Year" is not included as it’s the dataset year, not a variable.

▶ "State" and "Name" are likely identifier columns, not time-series data.

▶ Some variables have changed names or been slightly modified over the

years, but are grouped together (e.g., "Uninsured" and "Uninsured Adults").

▶ All variables show continuous availability without breaks within their

respective ranges.

6.2.5 Correlation 1 Datasets

File 1: all_commodities.csv

1. Read the CSV file and display basic information.

2. Check for missing values, duplicate rows, and display summary statistics.



3. Convert "Date-Time" to datetime and sort data by "Date-Time". Change

format to yyyy-mm.

4. Drop the "Unit" column and rows with NaN values.

5. Remove the row with commodity "Corn".

6. Rename "Value" column to "Value (in Cents per Pound)" and convert to

float.

7. Remove leading/trailing whitespace from string columns.

8. Save the cleaned data to a new CSV file.

File 2: all_stock_and_etfs.csv

1. Read the CSV file and display basic information.

2. Check for missing values, duplicate rows, and display summary statistics.

3. Check for any negative values in numeric columns.

4. Convert "Date-Time" to datetime and sort data by "Date-Time" and "Ticker_-

Symbol".

5. Remove extreme outliers from numeric columns using the IQR method.

6. Ensure "Volume" is non-negative.

7. Save the cleaned data to a new CSV file.

File 3: Meat_Stats_Cold_Storage.csv

1. Drop rows with NaN values.

2. Convert "Date" column to datetime format and drop "Year" and "Month"

columns.

3. Rename "Animal" column to "Object" and update "Other Chicken" value.

4. Drop the "Unit" column and rename "Weight" column to "Weight (in mln

Pounds)".

5. Sort data by "Date" and "Object".

6. Save the cleaned data to a new CSV file.

File 4: Meat_Stats_Meat_Production.csv

1. Drop rows with NaN values and update "Other Chicken" value.

2. Convert "Date" column to datetime format and drop "Unit" column.

3. Rename "Production" column to "Production (in mln Pounds)".

4. Map "Commercial or Federally Inspected" column to numeric values.

5. Adjust "Production (in mln Pounds)" column to float.

6. Drop "Year" and "Month" columns.

7. Sort data by "Date" and "Animal".

8. Save the cleaned data to a new CSV file.

File 5: Meat_Stats_Slaughter_Counts.csv

1. Drop rows with NaN values and update "Other chickens" and "Beef Cows"

values.

2. Convert "Date" column to datetime format and drop "Unit" column.

3. Rename "Count" column to "Count (in 1k Heads)".

4. Map "Commercial_Or_Federally_Inspected" column to numeric values.

5. Adjust "Count (in 1k Heads)" column to float.

6. Drop "Year" and "Month" columns.

7. Sort data by "Date" and "Animal".

8. Save the cleaned data to a new CSV file.

File 6: CPI Percent Changes.csv

1. Read the CPI data and melt the dataframe to convert years to a single

column.

2. Convert "Year" to datetime and pivot the dataframe to get items as columns

and years as rows.

3. Sort by "Year" and convert "Year" back to string format.



4. Save the transformed data to a new CSV file.

File 7: PPI Percent Changes.csv

1. Read the PPI data and melt the dataframe to convert years to a single

column.

2. Convert "Year" to datetime and pivot the dataframe to get items as columns

and years as rows.

3. Sort by "Year" and convert "Year" back to string format.

4. Save the transformed data to a new CSV file.

File 8: statecpi_beta.csv

1. Convert "year" to datetime and create a "date" column combining year and

quarter.

2. Sort by "state" and "date".

3. Calculate year-over-year percent changes for "pi", "pi_nt", and "pi_t".

4. Drop rows with NaN percent changes and reset index.

5. Map state names to their initials and select only the necessary columns.

6. Convert "year" to string and save the transformed data to a new CSV file.
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