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Abstract

In this project, we explore how inde-
pendent Q-learning agents learn in pre-
set environments. More precisely, we de-
fine increasingly complex game theoretic
systems to look at possible shortcom-
ings and interactions these agents have in
finding optimal solutions. We will start
with some key definitions and past re-
search, to then analyze behaviors in more
and more complex games. The paper
will explore the behavior of reinforce-
ment learning agents in environments
with clear optimal strategies, noticing
how such agents do indeed find opti-
mal solutions when those are clear, de-
terministic, and within a limited number
of agents’ interactions. Then, we will ex-
plore more complex games where a clear
solution is often difficult to find, is non-
deterministic, and where the amount of
agents’ interactions scales exponentially.
It is in these setups that the biggest short-
comings are to be found; thus, suggest-
ing, that the architecture of independent
Q-Learning agents is incapable of deal-
ing with games where optimal choices
change constantly or when the number
of agents is very high. On the other
hand, the architecture proves to be a per-

fect fit, and faster to converge to opti-
mal solutions than humans, in an envi-
ronment where there is a limited number
of agents’ interactions as well as an al-
ways static optimal strategy.

1 Introduction and Motivation
Through the field of Game Theory, humans
have successfully modeled some real-life
games. After a complete and correct model
is achieved, it is easier to find a ”solution” to
this game, thus ”solving” the game. A Game
is considered solved when the outcome (win,
lose, draw) can be correctly predicted from
any position, assuming that both players play
perfectly. These ”perfect moves” are called
dominant strategies. A strategy S dominates
another strategy S ′ if S leads to a better
outcome, independent of what the opponent
does.
Many game theory researchers believe that
the field can successfully model the vast ma-
jority of decision-making scenarios. Through
the concept of ”games” we can look at differ-
ent kinds of interactions and consequences in
complex systems. Looking at how reinforce-
ment learners behave can be fundamental in
understanding new, and unexpected, ways to
act on these games and act on real-world sce-
narios. Learning the shortcomings could be



fundamental in understanding when we can
trust reinforcement learning agents to find
the correct solution to real-world problems
and when we should not. We can envision
a future in which we have good enough and
trained models, capable of deciding if it is
optimal to go to dinner at this time at this
restaurant or not. This future is not any more
than distance, and studying reinforcement
learning is a promising area of research in
decision-making science. In this initial anal-
ysis, we will investigate the behavior of inde-
pendent Q-learning agents. More precisely,
we are interested in looking if they will even-
tually solve different kinds of games, always
playing the dominant strategies against each
other. Thus, converging to an equilibrium,
called Nash Equilibrium. Furthermore, we
are interested in understanding the shortcom-
ings and the solution of these agents, so as to
have new insights into problem solutions as
well as correct usage of these models. Thus,
converging to an equilibrium, called Nash
Equilibrium.

2 Previous Research
Researchers have long struggled to find a re-
inforcement learning model that could fit the
concept of Game theory with its complexi-
ties and generalization. Q-Learning or pol-
icy gradient result in being poorly suited to
multi-agent environment as well as being un-
stable under constantly changing agent’s pol-
icy. At first, the most promising results have
been in learning in multi-agent settings us-
ing independently learning agents with Q-
Learning (Tan 1997) but achieved poor re-
sults in practice (as the updates could not be
immediately communicated). Another Inter-
esting approach has been attempting to con-
verge to specific behaviors such as cooperat-

ing via sharing of policy parameters (Gupta,
Egorov, and Kochenderfer 2017), which re-
quired that every agent could have the same
capabilities (an assumption that does not al-
ways hold in game theory Nash equilibrium
scenarios). Promising research is present in
the case of Q-Learning in a noncooperative
multi-agent context. Here, researchers have
the framework of sum stochastic games. The
results have been very promising but limit
themselves to stationary strategies, strategies
that do not change over time over condition-
ing on historic plays (The framework used
is very useful, but results are slightly dif-
ferent from my goal, I found this very use-
ful regarding pseudocode) (Hu and Wellman
2003) 1 In other cases, researchers did not
try to perfect reinforcement learning but in-
stead preferred to use another approach alto-
gether. Spike-based Decision Learning out-
performed reinforcement learning in a num-
ber of games. This is more in the field of
Neuroeconomics. (Friedrich and Senn 2012)
Talking about new approaches, as I will ex-
plain more in detail later. I want to use as
a key resource a paper working around the
concept of different Q-Learning agent criti-
cizing and acting on each other (more details
below). This is an innovative approach that is
generalizable on different kind of games (co-
operative, mixed, competitive) (Lowe et al.
2020) Why is this important? The question
of whether reinforcement learning agents can
reach Nash equilibrium and how fast they
can do so is important as it touches on the
core of decision-making in complex, interac-
tive environments. Once we understand and
improve the efficiency of these algorithms
we will be able to optimize interactions in
fields such as economics, biology, and artifi-
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cial intelligence, where strategic interactions
and optimal decision-making are vital. One
important concern is the speed of conver-
gence as it is particularly important for appli-
cations requiring real-time decision-making
or operating in dynamic environments.

3 Foundational Definitions
• Game: A game, in the mathematical

sense, is a situation in which players make
rational decisions according to defined
rules in an attempt to receive some sort of
payoff.

• Strategy: A strategy is a complete algo-
rithm for playing the game, telling a player
what to do for every possible situation
throughout the game.

• Dominant Strategy: A dominant strategy
S is a strategy that provides optimal out-
comes for the player regardless of what the
other player does. We say that Strategy S
strictly dominates strategy S ′ if all the out-
comes of S are higher than the outcomes
of S ′. Or strategy S ′ is strictly dominated
by strategy S.

• Nash Equilibrium: A Nash equilibrium
occurs when each player in a non-
cooperative game has chosen a strategy
such that no one can increase their own
expected payoff by changing their strat-
egy, assuming other players keep theirs
unchanged. If the strategies remain con-
stant this is also called a Pure Strategy
Nash Equilibrium. This obviously happens
when everyone plays their own dominant
strategy.

• Mixed Strategy Nash Equilibrium: A
mixed strategy Nash equilibrium involves
at least one player playing a randomized
strategy and no player is able to increase

his or her expected payoff by playing an
alternate strategy.

4 Pure Nash Equilibrium Games with
Finite Agents

4.1 Rock, Paper, and Scissor

We all used to play Rock, Paper, and Scissors
as kids. The game is simple. We have two
players choosing, at the same time, one of
three actions: Rock, Paper, or Scissor. Then
the two actions are compared according to
the following order where R that beats S
beats P that beats R.

4.2 Practical and Mathematical Analysis of
Rock, Paper, and Scissor

In the practical analysis I have undertaken,
I have worked through training two in-
dependent Q-Learning agents in order to
make them learn the most optimal strategy
in the game. According to game theory
optimal dominant strategies, in RPS, we
should always randomly choose among
the three possibilities with equal probabili-
ties. Interestingly enough, in the following
graphs, we notice that the two agents ac-
tually do converge to this solution. After
an initial period of exploration they then
converge to pick each choice with proba-
bility 0.3. This is very promising results
suggesting that in an environment with
finite agents and pure nash equilibrium
the RL models do converge to the optimum.
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We then perturbate the system, making
Agent 2 unable to play Scissor. This is be-
cause I was interested in seeing how fast
agents would react to suboptimal strategies
by the opponent. This same result is applica-
ble in every successive category and is there-
fore omitted from the next ones. As demon-
strated by the subsequent graphs, agents are
pretty fast in adaptation. This is due to the in-
herent structure of the Q-Learning algorithm
(for the purposes of this paper, we have as-
sumed the reader has knowledge of it). More
precisely, the Q-Learning algorithm works
as an expected payoff maximizer at each it-
eration (other than exploration) and updates
these payoffs based on the results of its ac-
tions. By the nature of this algorithm, when
we perturbate the system the new iterative
updates will immediately change making the

agents converging to the second most opti-
mal strategy available. If we make Agent 2
unable to play rock, it then follows that to not
be exploited playing always the same action
among paper and rock it will randomly pick
0.5 of the times each, which is what we see it
does. On the other hand, Agent 1 now knows
that in expectation (by Q-Learning) Scissor
will have always the highest expected payoff
since it can not be beaten since Agent 2 is
unable to play Rock. This makes Agent 1 not
really playing the most optimal action but the
least exploitable.

4.3 Prisoner’s dilemma

Let’s now look at a slightly more complex
game with no such clear outcomes. The pris-
oner’s dilemma is a game in which two ”pris-
oners” are placed in two different rooms. The
police think that one of the two committed a
crime and want to understand who, so they
ask each separately to talk and say who did
what. One prisoner does not know what the
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other says. They have 2 possible actions C
(Cooperate) and D (Defect). The payoffs, in
my version, are as follows:

• If Both Cooperate they both get +3
• If Both Defects they both get +1
• If One Cooperates and the other Defects

the one who cooperates gets +0 and the
one who defects gets +5

Let’s look at what the two independent Q-
Learning agents do in practice

4.4 Practical and Mathematical Analysis of
Prisoner’s Dilemma

The two agents start by Exploring different
kinds of actions, starting from cooperation.
We do notice that it seems that agents will
constantly cooperate with a probability of
about 0.9. Then something happens around
iteration 1000, and one of the two starts de-
fecting which creates a vicious cycle. Now,
the other agent is punished for cooperating,
and in expectation if Agent One has 0.9 prob-
ability of cooperating Agent 2 by defecting
has an expected payoff of 0.9∗5 = 4.5 > 3,
thus, it will stop cooperating. This creates a
vicious cycle in which they both stop earn-
ing way less payoff than what they would do
in any other possible strategy. It is interest-
ing to see that they fall in the same traps as
humans, but, again, in a Pure Strategy Nash
Equilibrium game they still reach the Nash
Equilibrium (never cooperating in this case),
even when it is not the most optimal. Thus,
empirically, independent Q-Learning Agents
reach the Nash Equilibrium, in Pure Strategy
Nash Equilibrium with finite agents games
both when it is optimal to do so (RPS) and
when it is not (Prisoner’s Dilemma). This re-
sult has serious implications, as it shows that
Q-Learning Agents may be not useful when

searching for optimal solutions, but they may
still be studied in order to find new and pos-
sible Nash Equilibriums.

5 Pure Nash Equilibrium Games with
possibly Infinite Agents

5.1 p-Beauty Game

A different, more complex, kind of game
is the set of games that have a Pure Nash
Equilibrium but that can possibly have in-
finitely many agents, causing the overall
complexity of interactions to increase. One
of these games is the p-Beauty game, an auc-
tion game popularized by Game Theorists to
study how our minds work and how we think
of ourselves compared to our peers. In my
version of it, the rules are as follows:
”Choose a number between 0 and 100. The
winner is the person whose number is closest
to 2/3 times the average of all chosen num-
bers. The winner gets a fixed prize of 20 dol-
lars. In case of a tie, the prize is split amongst
those who tie.” According to a game theo-
retic analysis, the dominant strategy of this
game is based on the interactions with all the
other players. If all the players know game
theory and play rationally, we expect the
equilibrium to be everyone betting 0 dollars.
This is because, if you assume that everyone
bets 66 (around 2/3 of 100) you should then
play 44 (around 2/3 of 2/3 of 100) contin-
uing like this up until reaching 0. Will the
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Q-Learning agents understand this? In my p-
beauty game, I have chosen 50 agents and ran
some experiments

5.2 Practical and Mathematical Analysis of
the p-Beauty Game

Plotted below there is the evolution of the
median bet over time, the winning bet over
time, and the heatmap of the bet frequencies
over time.

All the agents start by giving higher expec-
tations to around 66 (which makes sense at
the first iteration) but we then notice that the
winning bet is way lower than that. At this
point, agents understand that they need to
lower their own bets and gradually move to-
ward 0. However, they then asymptotically
reach around 1 instead of actually reaching 0,
again, a sub-optimal solution that is not even
the correct Nash Equilibrium strategy.

Interestingly enough, instead of humans,
who arrive at an understanding through
multiple iterations that the best solution is
for everyone to bet 0, Q-Learning agents
do not arrive at it opening different scenarios.

By the heatmap, one would think that the
next reasonable step is to lower the bet,
but Q-Learning does not do that, as it is
stuck with the expected payoff it has. This
is a very surprising result, one that is worth
investigating further, and that I am currently
working on for future papers.

6 Mixed Nash Equilibrium Games
with possibly Infinite Agents

6.1 Kuhn’s poker

Real life is even more complex than that.
One of the most complex games to have been
analyzed is poker. Poker has the peculiar-
ity of not having optimal strategies uncon-
ditional on what happens in the game, but
it only has game theory optimal strategies
conditional on the cards drawn. This adds a
layer of complexity, as the Q-Learning al-
gorithm updates at the end of the iteration,
thus, not truly capturing the meaning of ac-
tion with the drawn cards (agents will choose
their actions unconditionally on the cards).
More precisely, the mixed strategy nash equi-
librium of this game is for the first player
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(Player 1), the equilibrium mixed strategy is
to bet with probability 2/3 when holding a
King, 1/3 when holding a Queen, and never
bet with a Jack. For the second player (Player
2), the equilibrium mixed strategy is to call
with probability 2/3 when the first player
bets, and 1/3 when the first player checks.
(van der Werf 2022)

6.2 Practical and Mathematical Analysis of
Kuhn’s poker

The implementation of Kuhn’s poker re-
sulted to be the hardest, with the agents
learning in a subotpimal way. The end re-
sults is that agent converge to the optimal
strategy just 1/3 of the times almost if they
were guessing the next move. This is most
likely caused by the shortcomings of the Q-
learning algorithm that do require additional
engineering to be overcome. More precisely,
the Q-learning algorithm has a payoff matrix
uncoditional on the card drawn or the action
see, maybe creating a multidimensional Q-
Learning would solve this problem. Overall,
it is interesting to note how Agent 1 bets way
more often than agent 2 which is what we
know to be correct. Furthermore, both agents
move their rate of bluffing to almost zero,
most likely as they seem to learn that bluffing
is almost never a good strategy! This is in-
deed true in real life too, where professional
poker players tend to bluff way less than the
past decades due to the concerns that the op-
ponent is playing game theory optimal strate-
gies regarding of what the other does or says.
In this way, you are guaranteed to win in the
long run if the other does not play always
game theory optimal moves.

7 Future Work
• Alternative path of learning: One possi-

ble area of improvement is to change the
algorithms through which reinforcement
learning agents learn. More precisely, right
now, we are dealing with multiple in-
dependent Q-learning agents instead of
working through an actual multi-agent re-

7



inforcement learning model. To the same
extent, it would interesting to investigate
other techniques that could achieve simi-
lar results.

• Real Poker: Another really interesting ex-
tension of the work done so far, would be
to train reinforcement learning agents on
real poker. This would be different from
”poker bots” as we would make them learn
unsupervisingly from the outcome of each
iteration they go through. It would be in-
teresting to see if, in a more complex en-
vironment where nash equilibrium is not
clear, reinforcement learning agent will,
nonetheless, converge to a solution.

• Real life situation: The ultimate goal of
this work is to have games capable of
correctly testing the reinforcement learn-
ing agents we have. Once these games are
achieved then we can model real life situa-
tion as games, and, hopefully, have an RL
model capable of giving an answer. Imag-
ine you need to know if you should go out
with John or Katherine, input their charac-
teristics and yours, and a model suggests
the most optimal expected utility.

8 Conclusion
As it was my very first time with coding
outside of introductory courses and the first
working with RL agents and game theory, I
feel very satisfied with the work done. These
results could be useful to build more ad-
vanced model capable of modeling real life
decision making. Through testing, the inde-
pendent Q-Learning agents approach proved
very useful in Pure Nash Equilibrium game
with finite agents (RPS), correctly predicting
the dominant strategies and assessing the op-
timal payoffs. To the same extent, it was in-
teresting to see how, by increasing the num-

ber of agents, the randomness due to the ex-
ploration rate causes noise inside the system
which blocks other agents to learn effectively
(p-beauty game) ultimately leading to not
reach the Nash Equilibrium. Furthermore, in-
terestingly enough, RL agents are not capa-
ble to understand the overall best strategy
but ultimately remain stuck in short-sighted
suboptimal scenarios (prisoner’s dilemma).
Moving to a more complex environment,
Kuhn’s poker unveiled some of the main con-
cerns and shortcomings regarding the inde-
pendent Q-Learning approach. The iterative
updates of the payoff matrix do not take into
account the conditionality caused by drawing
one card rather than another. This,
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