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ABSTRACT

Frontier Al models are growing to multiple trillions of param-
eters, pushing companies to invest billions into new datacen-
ter construction and accelerator purchases. As Al companies
strive to keep up with current scaling trends [6], they are ex-
pected to push well past the capacity of any single datacenter
[5]. This trend forces developers to consider multi-datacenter
training strategies. However, geographically distributed dat-
acenters introduce high-latency, low-bandwidth intercon-
nects that make traditional synchronous training—requiring
global parameter aggregation at every step—prohibitively
expensive.

We present Hierarchical Distributed Low-Communication
(HeDiLoCo) training, a framework inspired by DiLoCo [1],
that extends asynchronous training with flexibility for hier-
archical topologies. Workers in the same campus can syn-
chronize frequently at low latency, while synchronization
across distant regions can occur less frequently, to efficiently
balance communication overhead with model convergence
speed.

Our small experiments with a 100K parameter Transformer
on the tiny Shakespeare dataset demonstrate that HeDiLoCo
can speedup training times relative to a synchronous
baseline by 100 times while only incurring a 1-2% final
validation loss penalty. Our results highlight HeDiLoCo’s
promise as a flexible, scalable, cost-effective framework for
future multi-trillion parameter, multi-datacenter Al training.

1 INTRODUCTION

Frontier Artificial Intelligence (AI) models now contain tril-
lions of parameters, leading to training costs that can exceed
$1 billion. These exponential scaling trends are driven by
intense Al company competition and the rapid growth of
model capabilities. However, traditional compute colocation
strategies face bottlenecks, such as limited power availabil-
ity, construction timelines, and the inability to build new
datacenters fast enough to meet demand. For example, Mi-
crosoft recently announced a $7 billion investment in fiber

Applied Sciences
Cambridge, MA, USA

cabling to interconnect its Al-dedicated infrastructure across
regions [7].

A natural solution to these challenges is distributed train-
ing across geographically dispersed data centers. Unfortu-
nately, this approach introduces formidable issues: high-
latency and bandwidth-limited interconnects make tradi-
tional synchronous training—requiring global parameter ag-
gregation at every step—prohibitively inefficient. To address
these limitations, we propose Hierarchical Distributed
Low-Communication (HeDiLoCo) training, a novel frame-
work that reduces communication overhead by leveraging
hierarchical synchronization structures tailored to real-world
data center topologies.

We propose Hierarchical Distributed Low Communi-
cation (HeDiLoCo) training, an approach that extends the
asynchronous concept introduced by DiLoCo [1] with a hier-
archical structure. While DiLoCo reduces communication by
synchronizing every H steps, HeDiLoCo further differenti-
ates between intra-campus (lower latency) and inter-campus
(higher latency) connections. Workers within the same re-
gion synchronize frequently, while workers across distant re-
gions synchronize less frequently. This hierarchical approach
can greatly reduce communication costs while maintaining
robust model convergence, reflecting real-world landscapes
where datacenters cluster into campuses and states.

1.1 Problem Definition

The exponential scaling trends in Artificial Intelligence (AI)
models, driven by fierce competition among Al companies,
have resulted in training costs surpassing $1 billion and
compute demands that exceed the capacity of any single
datacenter. Traditional colocation strategies face significant
bottlenecks, including power limitations, construction de-
lays, and the logistical challenges of building new facilities
quickly enough to meet demand. Distributed training offers
a natural solution but introduces new challenges.

The key challenges we address include:

(1) Minimizing communication overhead: High-latency,

bandwidth-limited links between geographically dis-
tributed data centers make global synchronization



expensive and inefficient. Reducing the frequency of
these global updates is critical to improving training
scalability.

(2) Maintaining model convergence: Asynchronous
updates inherently risk model divergence. A careful
balance between local and global synchronization
intervals is essential to achieve robust model perfor-
mance.

(3) Scalability and flexibility: The solution must ef-
ficiently adapt to larger models, more complex data
center topologies, and heterogeneous infrastructure,
such as mixed hardware capabilities.

Novelty and Relevance: HeDiLoCo introduces a hierar-
chical synchronization strategy that differentiates between
intra-campus (low latency) and inter-campus (high latency)
connections, reflecting real-world data center topologies. By
reducing the frequency of costly global synchronizations,
HeDiLoCo offers significant financial and time savings. For
example, in AWS-based deployments across us-west-2 and
us-east-1 regions, HeDiLoCo demonstrated promising im-
provements in communication efficiency while maintaining
strong convergence.

2 RELATED WORK

Our work builds upon Google’s DiLoCo (Distributed Low-
Communication) framework [1], which trains language mod-
els asynchronously by synchronizing parameters every H
steps. DiLoCo successfully demonstrated the viability of
asynchronous training across geographically distributed data
centers with 60M-400M parameter Transformer models,
achieving strong convergence on the C4 dataset. However,
DiLoCo treats all workers uniformly, ignoring the hierar-
chical topologies commonly found in real-world data center
deployments.

Limitations of DiLoCo: While DiLoCo reduces communi-
cation by synchronizing infrequently, it lacks flexibility to
optimize for layered hierarchical structures, such as those
found in multi-campus or multi-region networks. This over-
sight limits its efficiency and scalability when applied to
more complex topologies.

Beyond DiLoCo, other approaches in distributed training
include:

e Federated Learning Methods: Techniques such as
Federated Averaging [3] focus on aggregating model
updates from distributed clients. While these meth-
ods prioritize privacy and client autonomy, they do
not explicitly address latency and bandwidth con-
straints in hierarchical data center settings.

e Parameter Server Architectures: Distributed frame-
works like MapReduce-based parameter servers [2]
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enable large-scale model training, but their central-
ized synchronization paradigm introduces bottlenecks
in high-latency scenarios.

e Asynchronous SGD Methods: Approaches like Hog-
wild [4] reduce synchronization frequency but lack
the awareness of hierarchical topologies, making
them less suitable for geographically distributed en-
vironments.

HeDiLoCo’s Novelty: Our framework introduces a hier-
archical synchronization structure tailored to real-world
data center topologies, where intra-campus synchroniza-
tion occurs frequently, and inter-campus synchronization
occurs less often. By leveraging this hierarchical aware-
ness, HeDiLoCo fills a critical gap left by prior methods,
enabling cost-effective and scalable distributed training for
next-generation Al models.

3 DESIGN AND TOPOLOGY
3.1 High-Level Approach

HeDiLoCo’s design introduces multiple layers of synchro-
nization:

e Local Synchronization (H; steps): Workers within
the same campus (low-latency connections) synchro-
nize frequently, every H; steps. For example, in our
experiments, H; = [2,5, 10, 25] steps were used.

o Global Synchronization (H; steps): Workers across
geographically distant regions (high-latency connec-
tions) synchronize less frequently, every H, steps. For
instance, H, = [100, 200, 300] steps were chosen for
experimentation.

This hierarchical synchronization strategy reflects the
real-world organization of data centers, where campuses are
clustered locally but separated by high-latency, bandwidth-
limited wide-area network (WAN) links.

3.2 Network Topology and Deployment

Our initial evaluation used a 2x2 setup with four workers
organized hierarchically:

e Local workers: Paired within the same AWS region,
specifically either us-west-2 (Oregon) and us-east-1
(Northern Virginia).

The AWS deployment configuration included:

e Non-overlapping Virtual Private Clouds (VPCs) for
each region.

e Configured peering connections between VPCs.

e Custom route table rules and internet gateways for
encrypted weight communication.

e Security group rules to ensure secure data transfer.
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Figure 1: Illustration of 2x2 HeDiLoCo

3.3 Latency Observations

Networking latency was a key consideration:

e Local all-reduce latency: Approximately 80ms for
intra-campus synchronization.

e Regional all-reduce latency: Approximately 13 sec-
onds for inter-campus synchronization.

These observations highlight the stark differences in com-
munication overhead between local and regional synchro-
nizations, motivating the hierarchical approach.

3.4 Scalability and Model Size

We scaled the model size from 100K to 600K parameters,
observing:

e An increase in regional all-reduce latency from 12.7
seconds to 18.3 seconds.

o A corresponding increase in local all-reduce latency
from 80ms to 463ms.

3.5 Flexibility

While the current 2x2 configuration demonstrates the viabil-
ity of hierarchical synchronization, HeDiLoCo is designed
to scale to more complex topologies, such as 2x2x3. Future
enhancements will include adaptive synchronization inter-
vals and support for heterogeneous worker capabilities to
further optimize performance across diverse deployments.

4 IMPLEMENTATION

Our implementation of HeDiLoCo demonstrates its feasibil-
ity in both simulated and real-world environments, lever-
aging a hierarchical synchronization structure to minimize
communication overhead.

Hierarchical
asynchronous
updates every
[Hy, Hy, H3] steps

Figure 2: Illustration of 2x2x3 HeDiLoCo

4.1 Training Setup

We used a 100K-parameter Transformer model trained on
the Shakespeare dataset ( 1IMB of text) to quickly test the
viability of HeDiLoCo. This dataset size allowed for rapid
experimentation and initial observations. The training setup
was deployed across AWS regions.

4.2 Synchronization Frequencies

e Local Synchronization (H; = [2,5, 10, 25] steps):
Workers within the same AWS region synchronized
their parameters frequently, using lower-latency con-
nections to reduce model divergence.

e Regional Synchronization (H; = [100, 200, 300]
steps): Workers across regions synchronized less fre-
quently, leveraging a modified Federated Averaging
method with Nesterov momentum to accelerate con-
vergence and enhance stability.

4.3 Hyperparameters and Scaling

Experiments were conducted with H; = [2,5, 10, 25] steps
and H, = [100, 200, 300] steps. Holding the model size con-
stant at 100K parameters.

4.4 Security and Communication

To ensure the security of distributed training:

e Encrypted weight communication was implemented
across regions using secure internet gateways.

e Security group rules were configured to allow only
authorized data transfers between workers.

This robust implementation framework not only validates
HeDiLoCo’s hierarchical synchronization but also ensures its
practicality in real-world, geographically distributed training
environments.



5 EVALUATION

We evaluate HeDiLoCo by comparing it to a traditional syn-
chronous baseline, studying its scalability, latency robust-
ness, and performance regarding model convergence and
communication costs. These experiments build upon insights
from both our midterm results and expanded real-world tests.

5.1 Experimental Setup

Hardware and Environment: The evaluation was con-
ducted on AWS infrastructure:

o Instances Used: Two c5.4xlarge instances in us-
west-2 (Oregon) and two c5.4xlarge instances in us-
east-1 (Northern Virginia).

e Network Configuration: Non-overlapping Virtual
Private Clouds (VPCs) were configured with secure
peering connections, custom route table rules, and
internet gateways to enable encrypted weight com-
munication.

e Networking Latencies: Local synchronizations (within
the same region) exhibited a latency of 80ms, while
global synchronizations (across regions) showed la-
tencies of 13 seconds.

Metrics: We used the following metrics to assess perfor-
mance:

e Training Loss: Tracks model learning progress across
steps.

e Validation Loss: Measures generalization on unseen
data.

5.2 Results and Findings

HeDiLoCo closely tracked the synchronous baseline for train-
ing loss in most configurations stabilizing around 1.75 after
10,000 steps. Figures 2 and ?? illustrate that, despite less
frequent global synchronizations (H; = 250 steps), the hier-
archical approach maintained strong convergence with only
a slight penalty in validation loss.

5.2.1 Overall picture. Figure 3 shows the comprehensive
training and validation loss curves for the synchronization
frequencies we attempted and compares HeDiLoCo with a
Synchronous baseline. We see that HeDiLoCo closely tracks
synchronous convergence in most cases, and seems to actu-
ally over-fit in one of the cases where it was synchronizing
more frequently. The synchronous baselines demonstrate
the loss curves that a theoretical training run synchronizing
at every step would achieve (but is run in a co-located setting
to avoid hour-long runs).

5.2.2  Specific Hierarchical run. In this section we dive into
more detail on a specific run where we set H; = 5 steps,
H, = 200. Figure 4 shows the training loss curves and figure
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Hierarchical (4 workers, batch=32) vs Synchronous (1 worker, batch=128)
H1 = 25 steps, H2 = 300 steps

Training Loss Comparison
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Figure 3: Training Loss and Validation Loss Over 600
Steps: Hierarchical (4 workers, batch=32) vs. Synchro-
nous (1 worker, batch=128) in various combinations of
H; and H; synchronization frequencies.

5 shows various details about the synchronization times and
utilization, and also shows the weights updates being sent.

5.2.3 Synchronous baselines. A fair synchronous compar-
ison to our HeDiLoCo experiments would run in the same
distributed setting but with a global all reduce at every train-
ing step. We did not implement this baseline, but measured
that it would take 2 hours to run given the 13 second all
reduce time per step. Instead, we pretended the compute
was co-located, and trained with 4x larger batch size and
learning rate to see how well a synchronous run would do
on the dataset. Figure 6 shows this relationship between the
large synchronous training time and its estimated validation
loss using this proxy.

5.24 Model scaling test. As an additional exercise we imple-
mented a 600K parameter transformer and ran it in the same
configuration with H; = 5, H, = 200. We found as shown in
figure 7 that the model saw much worse convergence com-
pared to a synchronous method, which may be a sign that
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Hierarchical (4 workers, batch=32) vs Synchronous (1 worker, batch=128)
H1 = 5 steps, H2 = 200 steps
Training Loss Comparison
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Figure 4: Training Loss and Validation Loss Over 600
Steps: Hierarchical (4 workers, batch=32) vs. Synchro-
nous (1 worker, batch=128) with H; = 5 and H, = 200
synchronization frequencies.

scaling model size puts an additional burden on asynchro-
nous algorithms, but is more likely just a function of less
exploration in hyper parameter space. The local and global
synchronization latencies only grew marginally, especially
in the glocal sync step, despite the model size growing to
600K, which shows communication is mainly latency and
not bandwidth bottlenecked, as expected.

e Local Sync Time: Increased from 80ms to 450ms
e Global Sync Time: Increased from 13 seconds to 18
seconds

5.3 Overall Advantages and Scaling

Our results in this limited experimental setting show promis-
ing advantages for hierarchical distributed training with
large communication overhead reduction at a low conver-
gence penalty. The results showed:

e In comparison to the a fully synchronous distributed
training run, HeDiLoCo can reduce training time up
to 100x in our setting.

e Despite these communication overhead gains, we see
a very small validation loss penalty of 1-2% on these
training runs.

5.4 Latency Scenarios and Flexibility

HeDiLoCo demonstrates adaptability to diverse network con-
ditions:

e A wide range of H; and H, values tested achieve
significant training time gains and low convergence
penalty.

e This flexibility suggests that HeDiLoCo should be
well-suited for real-world multi-datacenter setups
of various kinds, and might even be scaled down to
within a datacenter where servers on opposite sides
of a large cluster might form a lower layer of the
hierarchy.

Sync Times Training and Validation Losses
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CPU and Memory Utilization

Figure 5: (Top Left) Local and Regional synchroniza-
tion times (including encryption/decryption and all-
reduce). (Top Right) training loss and validation loss.
(Bottom Left) CPU and memory utilization curves (no-
tice the downward spikes at global sync steps). (Bottom
right) camulative bytes sent on the network, reflecting
the weights updates. H; = 5 steps, H, = 200 steps.

By focusing on training time and convergence performance
metrics, our results show the potential practical benefits of
using HeDiLoCo for training frontier AI models efficiently
across geographically distributed data centers.

6 LIMITATIONS AND FUTURE
DIRECTIONS
The results in this paper are promising for the HeDiLoCo

framework but are also still very much just a basic *proof of
concept’ implementation. Several limitations and
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Figure 6: Validation loss and training time compari-
son for different configurations. These illustrate that
the trade-off in convergence penalty for achieving a
significantly lower training time are small. Notice the
training time axis is on a log scale.

Figure 7: 600K parameter transformer scale-up. Train-
ing Loss and Validation Loss Over 600 Steps: Hierarchi-
cal (4 workers, batch=32) vs. Synchronous (1 worker,
batch=128) with H; = 5 and H, = 200 synchronization
frequencies.

(1) Scaling to Larger Models, Datasets, and Train-
ing runs: While our current experiments focused on
100K parameter models, future efforts would need to
scale HeDiLoCo to models with millions or perhaps
even billions of parameters. This would achieve the
important goal of showing whether asynchronous
training runs can be actually implemented in frontier
development efforts.

Convergence Assurances: The experiments we ran
did not ensure that the synchronized baselines were
representative of the best-case convergence possi-
ble with a synchronized training run, and we would
need to be expand the training runs tested to show
convergence being achieved by HeDiLoCo that is
competitive with a convergence we know to be opti-
mal.

Enhanced Hierarchical Structures: Implementing
more complex hierarchical topologies, such as 2x2x3
or beyond, will provide insights into the scalability

Validation Loss
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of HeDiLoCo in increasingly large and complex net-
works and topologies.

Heterogeneous Worker Flexibility: Real-world
data centers often involve heterogeneous hardware
(e.g., GPUs with varying capabilities). Future work
should focus on adapting HeDiLoCo to optimize syn-
chronization and communication frequencies dynam-
ically and ideally automatically across such hetero-
geneous setups.

Hyperparameter Tuning and Dynamic Adjust-
ments: Fine-tuning synchronization intervals (Hy,
H,) based on network conditions, model size, and
training progress is critical for further narrowing the
convergence gap. Additionally, exploring advanced
optimization techniques (e.g., adaptive learning rates
and momentum strategies) to enhance stability. These
could be made dynamic to adapt and correct course
even during a training run.

Security and Network Enhancements: It would
be nice to show the penalty introduced by the en-
cryption of the weights transfer and how this scales
with larger models.

®)

(6)

By addressing these challenges, HeDiLoCo has the potential
to become a robust and scalable framework for training fron-
tier Al models efficiently across geographically distributed
environments.

7 CONCLUSION

Our final evaluations demonstrate that HeDiLoCo’s hier-
archical approach significantly reduces communication
overhead while maintaining strong model convergence in
highly geographically distributed training environments. By
performing frequent local synchronizations and infrequent
global synchronizations, HeDiLoCo effectively balances la-
tency, bandwidth constraints, and model performance.

Key findings include:

o Efficiency Gains: HeDiLoCo reduced total training
time by a factor of 100 times compared to a synchro-
nous baseline for a 100K-parameter model. Regional
synchronization latencies ( 13 seconds) and local syn-
chronization latencies (80ms) illustrate its ability to
optimize communication costs.

e Convergence Penalty: We were able to find syn-
chronization configurations that only penalized final
validation loss on our dataset by 1-2%.

e Adaptability: Various different synchronization fre-
quencies were found to be robust in achieving this
performance which shows the inherent promise of
HeDiLoCo to be adaptable to many different real-
world topologies.
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Future Directions: Building on these results, future efforts
should focus on scaling experiments to larger models and
datasets, ensuring best-case-scenario convergence compar-
isons, improving adaptability for heterogeneous workers,
and building in dynamic and automated adaptability for
hyperparameters, optimizers and heterogeneous settings.
Comparisons to other distributed learning baselines and im-
plementation of advanced hierarchical structures (e.g., 2x2x3
setups) might further provide compelling evidence for the
promise of HeDiLoCo.

As Al models grow in scale and complexity, surpassing the
physical limits of single datacenter clusters, HeDiLoCo offers
a scalable and efficient framework for distributed training,.
Its promise lies in bridging the gap between drastically re-
duced communication overhead while trading off very little
in terms of model performance, providing a blueprint for
practical, distributed AI development.
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